Join the photo contest that helps Wikipedia
»Click here for the free Android app«
×

Contact lens

"Contacts" redirects here. For the OS X software application, see Contacts (application).

A pair of contact lenses, positioned with the concave side facing upward.

One-day disposable contact lenses with blue handling tint in blister-pack packaging
A contact lens, or simply contact, is a lens placed on the eye. Contact lenses are considered medical devices and can be worn to correct vision, for cosmetic or therapeutic reasons. In 2004, it was estimated that 125 million people (2%) use contact lenses worldwide, including 28 to 38 million in the United States.[1] In 2010, worldwide contact lens market was estimated at $6.1 billion, while the U.S. soft lens market is estimated at $2.1 billion.[2] Some have estimated that the global market will reach $11.7 billion by 2015.[2] As of 2010, the average age of contact lens wearers globally was 31 years old and two thirds of wearers were female.[3]

People choose to wear contact lenses for many reasons. Aesthetics and cosmetics are often motivating factors for people who would like to avoid wearing glasses or would like to change the appearance of their eyes.[4] Other people wear contacts for more visual reasons. When compared with spectacles, contact lenses typically provide better peripheral vision, and do not collect moisture such as rain, snow, condensation, or sweat. This makes them ideal for sports and other outdoor activities. Additionally, there are conditions such as keratoconus and aniseikonia that are typically corrected better by contacts than by glasses.

HideHistory

In 1888, Adolf Fick was the first to successfully fit contact lenses, which were made from blown glass
Leonardo Da Vinci is frequently credited with introducing the idea of contact lenses in his 1508 Codex of the eye, Manual D, where he described a method of directly altering corneal power by submerging the eye in a bowl of water. Leonardo, however, did not suggest his idea be used for correcting vision—he was more interested in learning about the mechanisms of accommodation of the eye.[5]

René Descartes proposed another idea in 1636, in which a glass tube filled with liquid is placed in direct contact with the cornea. The protruding end was to be composed of clear glass, shaped to correct vision; however, the idea was impracticable, since it would make blinking impossible.

In 1801, Thomas Young, made a basic pair of contact lenses on the model of Descartes. He used wax to affix water-filled lenses to his eyes. This neutralized his own refractive power. He then corrected for it with another pair of lenses.[6]

However, like Leonardo's, Young's device was not intended to correct refraction errors. Sir John Herschel, in a footnote of the 1845 edition of the Encyclopedia Metropolitana, posed two ideas for the visual correction: the first "a spherical capsule of glass filled with animal jelly", and "a mould of the cornea" which could be impressed on "some sort of transparent medium".[7] Though Herschel reportedly never tested these ideas, they were both later advanced by several independent inventors such as Hungarian Dr. Dallos with Istvan Komàromy (1929), perfected a method of making molds from living eyes. This enabled the manufacture of lenses that, for the first time, conformed to the actual shape of the eye.

It was not until 1887 that a German glassblower, F.E. Muller, produced the first eye covering to be seen through and tolerated.[8] In 1887, the German ophthalmologist Adolf Gaston Eugen Fick constructed and fitted the first successful contact lens. While working in Zürich, he described fabricating afocal scleral contact shells, which rested on the less sensitive rim of tissue around the cornea, and experimentally fitting them: initially on rabbits, then on himself, and lastly on a small group of volunteers. These lenses were made from heavy blown glass and were 18–21mm in diameter. Fick filled the empty space between cornea/callosity and glass with a dextrose solution. He published his work, "Contactbrille", in the journal Archiv für Augenheilkunde in March 1888.

Fick's lens was large, unwieldy, and could only be worn for a couple of hours at a time. August Müller in Kiel, Germany, corrected his own severe myopia with a more convenient glass-blown scleral contact lens of his own manufacture in 1888.[9]

Also in 1887, Louis J. Girard invented a similar scleral form of contact lens.[10] Glass-blown scleral lenses remained the only form of contact lens until the 1930s when polymethyl methacrylate (PMMA or Perspex/Plexiglas) was developed, allowing plastic scleral lenses to be manufactured for the first time. In 1936, optometrist William Feinbloom introduced plastic lenses, making them lighter and more convenient.[11] These lenses were a combination of glass and plastic.

In 1949, the first "corneal" lenses were developed.[12][13][14][15] These were much smaller than the original scleral lenses, as they sat only on the cornea rather than across all of the visible ocular surface, and could be worn up to sixteen hours per day. PMMA corneal lenses became the first contact lenses to have mass appeal through the 1960s, as lens designs became more sophisticated with improving manufacturing (lathe) technology.

Early corneal lenses in the 1950s and 1960s were relatively expensive and fragile, resulting in the development of a market for contact lens insurance. Replacement Lens Insurance, Inc. (now known as RLI Corp.) phased out its original flagship product in 1994 after contacts became more affordable and easier to replace.

One important disadvantage of PMMA lenses is that no oxygen is transmitted through the lens to the conjunctiva and cornea, which can cause a number of adverse clinical effects. By the end of the 1970s, and through the 1980s and 1990s, a range of oxygen-permeable but rigid materials were developed to overcome this problem. Chemist Norman Gaylord played a prominent role in the development of these newer, permeable contact lenses.[16] Collectively, these polymers are referred to as "rigid gas permeable" or "RGP" materials or lenses. Although all the above lens types — sclerals, PMMA lenses and RGPs — could be correctly referred to as being "hard" or "rigid", the term hard is now used to refer to the original PMMA lenses, which are still occasionally fitted and worn, whereas rigid is a generic term that can be used for all these lens types: hard lenses (PMMA lenses) are a sub-set of rigid lenses. Occasionally, the term "gas permeable" is used to describe RGP lenses, but this is potentially misleading, as soft lenses are also gas permeable in that they allow oxygen to move through the lens to the ocular surface.

The principal breakthrough in soft lenses was made by the Czech chemists Otto Wichterle and Drahoslav Lim who published their work "Hydrophilic gels for biological use" in the journal Nature in 1959.[17] This led to the launch of the first soft (hydrogel) lenses in some countries in the 1960s and the first approval of the Soflens material by the United States Food and Drug Administration (FDA) in 1971. These lenses were soon prescribed more often than rigid lenses, mainly due to the immediate comfort of soft lenses; by comparison, rigid lenses require a period of adaptation before full comfort is achieved. The polymers from which soft lenses are manufactured improved over the next 25 years, primarily in terms of increasing the oxygen permeability by varying the ingredients. In 1972, British optometrist Rishi Agarwal was the first to suggest disposable soft contact lenses.[18][19]

In 1998, an important development was the launch of the first silicone hydrogels onto the market by CIBA VISION in Mexico. These new materials encapsulated the benefits of silicone — which has extremely high oxygen permeability — with the comfort and clinical performance of the conventional hydrogels which had been used for the previous 30 years. These lenses were initially advocated primarily for extended (overnight) wear although more recently, daily (no overnight) wear silicone hydrogels have been launched.

In a slightly modified molecule, a polar group is added without changing the structure of the silicone hydrogel. This is referred to as the Tanaka monomer because it was invented and patented by Kyoichi Tanaka of Menicon Co. of Japan in 1979. Second-generation silicone hydrogels, such as galyfilcon A (Acuvue Advance, Vistakon) and senofilcon A (Acuvue Oasys, Vistakon), use the Tanaka monomer. Vistakon improved the Tanaka monomer even further and added other molecules, which serve as an internal wetting agent.[20]

Comfilcon A (Biofinity, CooperVision) was the first third-generation polymer. The patent claims that the material uses two siloxy macromers of different sizes that, when used in combination, produce very high oxygen permeability (for a given water content). Enfilcon A (Avaira, CooperVision) is another third-generation material that is naturally wettable. The enfilcon A material is 46% water.[20]

↑Jump back a section
ShowTypes of contact lenses

ShowManufacturing of contact lenses

ShowContact

Post a Comment

Popular posts from this blog

1.2.1 - Shone

Herbivore | Omnivore | Carnivore

Mohenjo Daro